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Emerging methods in radiology

Several milestones can be high-
lighted in the development of
imaging methods. It started with
the detection of X-rays, enabling the
first noninvasive view into the body,
followed by the introduction of to-
mographic methods, providingmore
anatomical details, and the intro-
duction of functional and molecular
imaging, paving the way for a spa-
tially resolved pathophysiological
characterization.

Imaging methods and probes continue
to undergo advances, and new imaging
methods are emerging, increasing the
spectrum of accessible biomedical fea-
tures. However, with the rise of deep
learning, radiomics, and comprehensive
data analysis, a new era of diagnostics
starts, where image features from var-
ious sources can be integrated and in-
terpreted in concert with other diagnos-
tic data. This article highlights some of
themost recent developments in imaging
technology, considering the opportuni-
ties ushered inwith advanced digital data
analysis. However, because of the lim-
ited space in this article, we only focus
on approaches that are already close to
or in the process of clinical translation.

Advances in computed
tomography

Due to concerns regarding the radiation
risk of computed tomography (CT), in-
tense research has been conducted on the
processing of low-dose CTdata. Iterative
reconstructiontechniquesachievehigher
image quality than filtered backprojec-
tion, but reconstructed images from low-
dose CT data still suffer from increased

noise and artifacts. Recent publications
present deep-learning methods from
computer vision to improve the qual-
ity of medical images. Convolutional
neural networks show promising results
for low-dose CT denoising in the form
of residual autoencoders (. Fig. 1a–c;
[12]) and generative adversarial net-
works. Furthermore, neural networks
can be used to reducemetal artifacts [27]
and to optimize iterative reconstruction
algorithms [71].

Advances in CT hardware have been
achieved with smaller detector element
sizes, resulting in ultra-high-resolution
CTscanners, whichusematrix sizes ofup
to 2048× 2048 pixels (. Fig. 1d–i; [26]).

Photon-counting computed
tomography

AnotherCTdevelopmentgainingclinical
interest is photon-counting CT (PCCT),
which uses energy-resolving detectors
and thus enables the acquisition of CT
scans at multiple energies. Initial evalu-
ations have shown its capability of high-
resolution imaging with reduced radia-
tion dose [56], as well as the distinction
between different tissue types and con-
trast agents [48, 53]. One-step inversion
methods have been recently introduced
for the joint material decomposition and
tomographic reconstruction of PCCT
data, which can improve image quality
and decrease noise levels compared with
sequential approaches [40]. Clinical
PCCT systems are being developed but
face several technical challenges, includ-
ing pile up and cross talk in detector
elements.

Phase-contrast imaging

Another promising innovation in the
field of X-ray imaging is phase-contrast
imaging (PCI). While standard X-ray
systems image the absorption of pho-
tons passing through a patient, here
image contrast is generated by the phase
shift of X-rays, caused by different re-
fractive indices of tissues. Talbot–Lau
interferometers that use fine gratings in
the X-ray beam path enable the recon-
struction of three different images: the
typical absorption image, a differential
phase image, and a dark-field image.
The latter measures ultra-small angle
scattering caused by inhomogeneities
in materials at the micrometer scale.
Use cases for X-ray dark-field imaging
include the detection and quantification
of pulmonary emphysema and imaging
of brain connectivity [68, 69]. Further-
more, PCI can improve the sensitivity
of calcification classification in breast
imaging, and clinical systems in the field
of mammography are being developed
[51].

Advances in magnetic
resonance imaging

Magnetic resonance imaging (MRI) is
known for its excellent soft tissue con-
trast, which is based on nuclearmagnetic
resonance of (proton) spins without the
need for ionizing radiation. Throughout
the history of MRI, continuous efforts
were made to accelerate the time-inten-
sive examinations. After multichannel
receive arrays enabled parallel imaging
with SENSE or GRAPPA reconstruction,
the combination with k-t-space imaging
further improvedthe temporal resolution

Der Radiologe · Suppl 1 · 2020 S41

https://doi.org/10.1007/s00117-020-00696-0
http://crossmark.crossref.org/dialog/?doi=10.1007/s00117-020-00696-0&domain=pdf


Review

Fig. 18 a–cDenoising results using deep learning from an abdominal imagewith ametastasis in the liver.aNormal-dose
computed tomography (CT),b low-dose CT, and c residual encoder-decoderCNN (RED-CNN). The RED-CNNsuppresses noise
while preserving the image structure. (Reprintedwith permission from [12]).d–iUltra-high-resolution CT images of a cadav-
eric lungwith honeycombing using 512×512 (d), 1024×1024 (e), and 2048×2048 (f)matrix sizes and the corresponding
images thatweremagnified sixfold (g–i). The small honeycombing air spaces are depictedmore clearly in the 2048×2048
matrix than in the1024×1024matrix (arrow); the512×512matrixwas themostblurredandcouldnotdepictsomeair spaces.
Image noisewas visually lower in the following order: 512× 512, 1024×1024, and 2048×2048. (Reprintedwith permission
from [26])

of dynamic scans. Simultaneous multi-
slice imaging combined parallel imaging
along the slice direction with the use of
multi-band RF pulses, thereby permit-
ting the acquisition of multiple slices at
a time with minor penalty on the signal-
to-noise ratio. The use of non-Carte-
sian data acquisition schemes such as ra-
dial sampling enabled three-dimensional
coverage of the heart with reduced mo-
tion sensitivity and, as a major break-
through, real-time (and non-triggered!)
imaging of the heart as well as the visu-
alization of speech [58].

Compressed sensing

Compressed sensing (CS), introduced to
thefieldofMRIresearchbyLustig et al. in
2007, reconstructs themissing samples in
incoherently undersampled MRI data in
an iterative fashion, exploiting data spar-
sity. The basic principle of accelerated
MRI is explained in . Fig. 2. In 2017, CS
achieved FDA approval and enabled ac-
celerated dynamic and volumetric imag-
ing inmanyapplicationsrelyingonspeed,
as, for example, in cardiacMRI, dynamic
contrast-enhanced acquisitions, angiog-
raphy, and pediatric imaging among oth-
ers. For example, CS in conjunction with
4D-flowMRImade itpossible toexamine

different aortopathies within a clinically
feasible scan time [44].

While diagnostic MRI relies to a ma-
jor extent on contrast-weighted images,
faster scanning techniques in conjunc-
tion with model-based reconstruction
techniques, such as MR fingerprinting
[37], have started to enable a more
widespread access to multi-paramet-
ric and quantitative tissue parameter
measurements.

Chemical exchange saturation
transfer

Recently, concerns were raised regarding
the retention of gadolinium-based con-
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trast agents in the brain. As a first step
toward gadolinium-free MRI examina-
tions, reductions in the contrast agent
dose may be feasible for certain appli-
cations [16]. Moreover, potential alter-
natives to gadolinium contrast agent-en-
hanced scans are increasingly explored
in the clinical context. For instance,
diffusion-weighted imaging provides an
image contrast that is mediated by the
diffusion processes of water molecules
within tissue microstructures. In addi-
tion, chemical exchange saturation trans-
fer (CEST) enables imaging of exogenous
and, especially, of endogenousmolecules
such as amides, amines, glutamate, and
creatine and thus has potential for imag-
ing of metabolic processes. Applications
of CEST comprise imaging of cerebral
ischemia, neurological disorders, lym-
phedema, osteoarthritis, muscle physi-
ology, and solid tumors [29, 62]. The
improved performance of CEST at high
field strengths (i.e., min. 7T for most
metabolites) limits itswidespread clinical
application, although initial experiences
withglucoCESTandgagCEST imagingat
3T have been reported for tumor, brain,
andcartilage imaging[33]. Moreover, the
dependence of CEST contrast on a va-
riety of experimental parameters consti-
tutes a challenge for the reproducibility
of CEST results [70].

13C hyperpolarized magnetic
resonance imaging

Another promising approach toward
metabolic imaging is 13C hyperpolarized
MRI, for which a special preparation
step results in highly increased signal
from 13C contrast agents. Among these,
[1-13C]pyruvate is evaluated in clinical
trials for the visualization of metabolic
changes during treatment of prostate
cancer (. Fig. 2a; [2]), brain cancer, as
well as in cardiac diseases. Preclinical
studies, moreover, showed potential for
monitoring of liver and kidney disease
andof inflammatoryprocesses and inves-
tigated a variety of probes. In contrast to
CEST, 13C hyperpolarized MRI requires
dedicated dual-tuned, multichannel coil
arrays and a polarizer for probe delivery,
which are nonclinical standards. Yet,
one clinically approved polarizer (GE
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Abstract
Imaging modalities have developed rapidly
in recent decades. In addition to improved
resolution as well as whole-body and
faster image acquisition, the possibilities of
functional and molecular examination of
tissue pathophysiology have had a decisive
influence on imaging diagnostics and
provided ground-breaking knowledge. Many
promising approaches are currently being
pursued to increase the application area of
devices and contrast media and to improve
their sensitivity and quantitative informative
value. These are complemented by new
methods of data processing, multiparametric
data analysis, and integrated diagnostics.
The aim of this article is to provide an
overview of technological innovations that
will enrich clinical imaging in the future,
and to highlight the resultant diagnostic
options. These relate to the established
imagingmethods such as CT, MRI, ultrasound,

PET, and SPECT but also to new methods
such as magnetic particle imaging (MPI),
optical imaging, and photoacoustics. In
addition, approaches to radiomic image
evaluation are explained and the chances and
difficulties for their broad clinical introduction
are discussed. The potential of imaging to
describe pathophysiological relationships in
ever increasing detail, both at whole-body
and tissue level, can in future be used to
better understand the mechanistic effect of
drugs, to preselect patients to therapies, and
to improve monitoring of therapy success.
Consequently, the use of interdisciplinary
integrated diagnostics will greatly change
and enrich the profession of radiologists.

Keywords
Molecular imaging · Radiomics · Biomarker ·
Deep learning · Diagnostic imaging

Neue technische Entwicklungen in der Radiologie

Zusammenfassung
Die bildgebenden Verfahren haben
sich in den letzten Jahrzehnten rasant
weiterentwickelt. Neben verbessertem
Auflösungsvermögen, Ganzkörpererfassung
und schnellerer Bilderstellung haben vor
allem die Möglichkeiten der funktionellen
und molekularen Untersuchung der Gewebe-
pathophysiologie die bildgebende Diagnostik
maßgeblich beeinflusst und wegweisende
Erkenntnisse geliefert. Viele aussichtsreiche
Ansätze werden derzeit verfolgt, um das
Spektrum der Anwendbarkeit von Geräten
und Kontrastmitteln zu erhöhen und deren
Sensitivität und quantitative Aussagekraft
zu verbessern. Hinzu kommen neuartige
Verfahren der Datenverarbeitung, der
multiparametrischenDatenanalyse und der
integrierten Diagnostik. Ziel dieses Beitrags
ist es, einen Überblick zu geben, welche
technologischen Neuerungen die klinische
Bildgebung inZukunft bereichernwerdenund
welche diagnostischenMöglichkeiten daraus
resultieren. Diese betreffen sowohl etablierte
Bildgebungsverfahren wie Computerto-
mographie, Magnetresonanztomographie,
Ultraschall, Positronenemissionstomographie

und „single photon emission computed
tomography“ als auch neue Verfahren wie
„magnetic particle imaging“, die optische
Bildgebung und die Photoakustik. Ferner
werden Ansätze der Radiomics-basierten
Bildauswertung erläutert und die Möglich-
keiten und Schwierigkeiten bei deren breiter
klinischer Einführung diskutiert. Das Potenzial
der Bildgebung, pathophysiologische
Zusammenhänge in stetig steigendem
Detailgrad sowohl auf Ganzkörperniveau
als auch auf Gewebeebene zu beschreiben,
kann in Zukunft genutzt werden, um die
Wirkungsweise von Medikamenten besser
zu verstehen, Patienten für Therapien
gezielt auszuwählen und die Überwachung
der Therapieerfolge zu verbessern. In der
Folge wird der Einsatz fachübergreifender
integrierter Diagnostik das Berufsbild des
Radiologen stark verändern und bereichern.

Schlüsselwörter
Molekulare Bildgebung · Radiomics ·
Biomarker · Deep Learning · Diagnostische
Bildgebung
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Fig. 28 a 13C hyperpolarizedmagnetic resonance imaging (MRI) as an alternativemethod to gadolinium-based imaging.
From left to right: axial T2-weighted (T2W) image of a 52-year-old prostate cancer patientwith extensive high-grade prostate
cancer, thewater apparent diffusion coefficientmap (ADC), andanoverlay of the pyruvate-to-lactatemetabolic flux (kPL) im-
agewith the corresponding hyperpolarized (HP) 13C array of spectra (SA) are shown. Top row: before therapy; bottom row:
6 weeks after initiation of androgen ablation and chemotherapy.The kPL image indicates therapy responsemost clearly,
corroborating the clinical response of the patient. (Reprintedwith permission from [2]).b–fCompressed sensing and other
emerging reconstructionmethods enable fasterMRI scanning.b Basic principle is demonstrated for a dynamic image series.
Acceleratedscanning isaccomplishedwithundersampling, i.e., bygathering fewerdata thanneededforhigh-quality images.
After performing a sophisticated reconstruction, high image quality is restored.c–fA deep-learning-based reconstruction
methodworkingwith convolutional recurrent neural networks (CRNN) is applied to a cardiacMRI scan in axial view.While the
undersampled image (d) isdiagnosticallyunusable, theCRNNreconstruction (e) closely resembles thegroundtruth image (c),
with a deviation of less than 3%as depicted in the colormap (f). (Reprintedwith permission from [49])

SpinLab) is available on the market,
encouraging a further translation of this
technique.

Deep-learning applications

Recently, deep learninghashad its advent
inMRI with applications along the entire
imaging chain [36]. Qin et al. presented
an accelerated dynamic reconstruction
usingconvolutional recurrentneuralnet-
works (CRNN) for undersampled car-

diac MRI data [49]. Figure 2c–f demon-
strates that their deep-learning recon-
struction closely resembles the ground
truth dataset. Chen et al. applied a vari-
ational network to real-time reconstruc-
tion of undersampled abdominal MRI
data [11]. Again, the deep-learning ap-
proach outperformed the CS reconstruc-
tion in speed and image quality. Zhu
et al. generalized deep-learning-based
image reconstruction to different sam-
pling strategies and even to the recon-

struction of PET raw data [74]. Deep
learning was equally applied to quantita-
tive MRI, for example, to accelerate MR
fingerprinting reconstructions, to quan-
titative susceptibility mapping, and to
estimate tissue microstructure proper-
ties from a reduced number of diffu-
sion-weighted images [36]. Further ap-
plications of deep learning to MRI in-
clude image denoising and artifact de-
tection, super-resolution, the generation
of synthetic images, and image registra-
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Fig. 38 a Reconstructed dynamic positron emission tomography (PET) images from the uEXPLORER total-body PET system.
The images show framesof100ms, alternatingbetween theend-diastolic andend-systolic phasesoffive cardiac cycles.bDy-
namic time–activity curvescorrespondingtoa, showingthecardiacmodulationof the traceratdifferent locations. (Reprinted
with permission from [72]). c–e Results of a trained denoising convolutional neural network (DnCNN) combinedwith an iter-
ative PET reconstructiondemonstrating reconstructedPET images from low count statistics.c Full-dose image reconstructed
with a reference reconstruction (OPOSEMmethod),d 10×low-dose OPOSEM image, and e 10×low-dose OPOSEM image
with the proposedDnCNNmethod. fNetwork topology of the DnCNN. (Reprintedwith permission from [32])

tion[36]. Numerousstudiesdemonstrate
deep learning in disease prediction and
diagnosis [36]. It is expected that many
current researchprojects employingdeep
learning will become integrated in clini-
cal products in the near future, although
issues of data access and privacy need to
be considered carefully.

Advances in nuclear imaging
techniques

When the combination of positron
emission tomography (PET) and com-
puted tomography (CT) was intro-
duced in 2000, commercial PET/CT
and SPECT/CT systems used vacuum
photomultiplier tubes (PMTs). How-
ever, semiconductor detectors (so-called
silicon photomultiplier [SiPM]) were
invented as early as in the 1990s, which
revolutionized the entire field of nu-
clear medicine by surpassing traditional
PMTs in aspects such as compactness,
flexibility, and performance. Research
groups have demonstrated excellent per-
formance with benchtop and prototype

systems, indicating further growth po-
tential for this technology [42, 52].

Hybrid imaging

Based on the success of semiconductor
technology, all major vendors have re-
cently introduced PET/CT systems that
offer PET with a coincidence time reso-
lution of 200–300ps and a spatial resolu-
tion of about 3–4mm. The insensitivity
of these new detectors to strong mag-
neticfieldsstimulated thedevelopmentof
hybrid simultaneous PET/MRI systems,
a modality that is now offered by almost
all major vendors. Currently, PET/MRI
is mostly used in the field of neurology,
oncology, and pediatrics. In parallel to
clinical PET/MRI, PET inserts were de-
veloped that convert standard MRI sys-
tems into hybrid scanners. The first sys-
tems were used in preclinical imaging
[38, 65] and are now being further de-
veloped for various organs, such as breast
PET/MRI and neuro-PET/MRI, to name
just a few.

Recently, the first two total-body
PET systems were stimulated from the
Explorer consortium: the uEXPLORER
fromUnited ImagingHealthcare (Shang-
hai, China), which is installed at the
University of California, Davis, and the
PennExplorer, which has been devel-
oped by the University of Pennsylvania.
Thanks to their large axial field of view,
these systems offer system sensitivity
up to a factor of 40 higher than today’s
clinical PET/CT scanners. This enables
a range of novel applications, from ultra-
low dose PET images to dynamic imag-
ing within sub-seconds and total-body
pharmacokinetics (. Fig. 3a, b; [72]).

In SPECT, pinhole collimator tech-
nology has become the state of the art
for preclinical imaging. The first clinical
SPECT system for brain and large ani-
mal imaging is now available (G-SPECT,
MILabs, The Netherlands), which offers
a spatial resolution of down to 3mm [7].
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Machine learning

Parallel to these innovations on the sys-
tem level, the field of software-based
data processing is developing rapidly
through the application of machine-
learning methods. These algorithms
provide improved and faster image re-
construction with lower image noise,
real-time scatter correction, and im-
proved spatial resolution by integrating
machine-learning methods along the
entire signal processing chain. For in-
stance, a denoising convolutional neural
network (DnCNN) was proposed as an
iterative reconstruction framework for
PET, which improves the reconstruction
result both quantitatively and qualita-
tively (. Fig. 3c–e; [32]). For the field
of detector data processing, gradient
tree boosting machine-learning meth-
ods have shown a high potential for
3D event positioning within monolithic
and semi-monolithic scintillator crys-
tals, which may be the crystal topology
of the future [43].

Radioligands

In addition to these technical develop-
ments, several promising radioligands
have been developed and clinically ap-
plied in recent years. A very promising
candidate is 68Ga-PSMA. A recent study
showed that this PSMA ligand sur-
passes all other imaging modalities for
the restaging of prostate cancer with
a detection rate of >90% for patients
with prostate-specific antigen levels over
1ng/ml [19]. AnotherpromisingPETra-
diotracer uses quinoline-based fibroblast
activation protein inhibitors (FAPI) and
targets the tumor stroma, i.e., cancer-
associated fibroblasts. In this respect,
68Ga-FAPI PET/CT has been reported to
be an alternative diagnostic method to
18F-FDG, allowing us to image various
types of cancer, such as head and neck,
colon, lung, breast, and pancreatic can-
cer with tumor-to-background contrast
ratios equal to or even better than those
of 18F-FDG [21].

Immuno-PET imaging

A further emerging area is Immuno-
PET [61]. The recent clinical successes
of immunotherapies require the nonin-
vasive monitoring of the tumor immune
response to therapy. 89Zr-Immuno-PET
may play a key role in this context as
it combines the specificity and affin-
ity of antibodies with the sensitivity of
PET [60, 64]. The long half-life of 89Zr
(t= 78.4h) enables measurements over
longer time intervals, which is important
since the accumulation of antibodies in
tumors is slow and active targeting ef-
fects can only be distinguished at late
time points. Several clinical trials re-
ported on the clinical performance of
Immuno-PET for a variety of tumors,
such as head and neck cancer, breast
cancer, B-cell lymphoma, glioblastoma,
neuroendocrine tumors, non-small cell
lung cancer, prostate cancer, pancreatic
cancer, ovarian cancer, colorectal cancer,
and renal cell carcinoma [8, 28].

Overall, the number of innovations
in the field of nuclear medicine has been
enormous in the past decade. Nuclear
medicine imagingwill becomemore pre-
cise andmore quantitative in the near fu-
ture, due to the use of new technologies,
machine-learningmethods, andnovelra-
dioligands, paving the way to new appli-
cations.

Magnetic particle imaging

Magnetic particle imaging (MPI) is
a novel, tracer-based imaging modality
that quantitatively visualizes super-para-
magnetic iron oxide-based nanoparticles
(SPIONs) in vitro and in vivo. Magnetic
particle imaging exploits the non-linear
magnetization function of SPIONs by
applying multiple superimposed static
and dynamic magnetic fields and mea-
suring the distorted magnetic response
of the particles. Currently, commercial
preclinical scanners offer high sensitiv-
ity—5–20ng(Fe), 2.8μmol(Fe)/l—sub-
millimeter spatial resolution, and high
temporal resolution with up to 46 vol-
umes per second [23]. Since MPI only
shows the tracer distribution, it lacks
anatomical information,whichcanbeac-
quired by anatomical imagingmodalities

followed by image fusion. Consequently,
hybrid MPI-MRI scanners have already
been developed to facilitate co-registra-
tion, which speeds up the acquisition
process and simplifies the workflow [20].

The high temporal resolution of MPI
enables real-time imaging, making MPI
capable of perfusion imaging and blood
flow velocity quantification (. Fig. 4a;
[67]). Thus, MPI is often discussed
as a modality for diagnosing vascular
diseases and for supporting vascular
interventions [6, 50]. A human-sized
MPI system developed for brain per-
fusion imaging was recently reported
(. Fig. 4b; [24]). Another promising
feature of MPI is the ability to obtain pa-
rameters of the SPION local environment
such as temperature, viscosity, or particle
mobility/binding state [47]. Knowledge
of these parameters can be beneficial
in applications such as magnetic hyper-
thermia or nanomedicine [14]. Other
potential applications of MPI are cell
tracking, interventional medicine, and
diagnosis of inflammatory diseases and
cancer [6, 50].

However, the clinical translation of
the young modalityMPI (invented 2005)
is a tough challenge, since it needs to
compete with other clinically established
imaging methods. Upscaling to human-
sized scanners has just begun. Addition-
ally, the predicted iron detection limit of
MPI—<1μmol(Fe)/l—that would out-
perform the sensitivity of SPION-en-
hanced MRI—~50μmol(Fe)/l—is still
not proven experimentally [66]. Rea-
sons might be the lack of MPI-optimized
tracers and hardware, e.g., distortions
of power electronics raising the noise
floor. Further enhancement of MPI
performance may result from advances
in reconstruction techniques and imag-
ing sequences. Reaching the predicted
detection limit would strengthen the
position of MPI against the established
imaging modalities. Finally, there is still
an intense search for a clinical appli-
cation giving it a strong unique selling
point.
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Fig. 48 a Real-time in vivomeasurement of a beatingmouse heart.Themagnetic particle imaging (MPI) imageswere fused
with staticMRI images.SPION (Resovist, Bayer Schering PharmaAG,Wuppertal, Germany)was injected into the tail vein of
themouse. The successive phases of the bolus passage canbe taken from the time axis on the right.All heart chambers and
parts of the vessel tree couldbe identified (Reprintedwithpermission from [67]).b Stroke phantom images acquiredwith the
human-sizedMPI for brain applications.Different grades of perfusion deficits were simulated by filling Perimag (micromod
Partikeltechnologie GmbH, Rostock, Germany)with varying iron concentrations in the fitting part that reflects the stroke.
In the control case, the iron concentrationwas the same as in the left hemisphere (965ngFeml–1). The stroke areas could be
identified in the difference image for 100%, 66%, and 33% reduction. (Thework is licensed under CC BY 4.0 from [24] https://
creativecommons.org/licenses/by/4.0/).cBrightfieldandfluorescence imagesof theprimary lesion resectionmargin (dotted
line) frompatientwith head andneck cancer, who received an i.v. injection of panitumumab-IRDye800CW. The fluorescence
imageshowssomeremainingfluorescence(yellowcircle),whichwasproventobeaclosemargin(distancefromprimary lesion
to resectionmargin <5mm). (This researchwas originally published in JNM. Van Keulen S., et al.The Clinical Application of
Fluorescence-Guided Surgery in Head andNeck Cancer. J NuclMed. 2019; 60:758-763@SNMMI [59] under CCBY 4.0 https://
creativecommons.org/licenses/by/4.0/.)
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Optical and photoacoustic
imaging

Optical imaging techniques rely on pho-
tons in the visible or near-infrared wave-
length range, which interact with tissue,
and are captured by a camera. Fluo-
rescence and photoacoustic imaging in-
volve light sources external to the tissue,
whereasbioluminescence imagingmakes
use of photons generated by enzymati-
cally catalyzed chemical reactions, as is
known from fireflies. Bioluminescence
imaging is of less relevance for clinical
imaging; hence it is not discussed in the
following.

Fluorescence imaging

The penetration depth of only a few
millimeters limits applications of fluo-
rescence imaging to superficial struc-
tures, such as skin lesions or tissues
accessible by endoscopes. Narrow-band
illumination sources and optical filters
enable acquisition of multiple channels
for improved discrimination of tissue
types, and such multispectral endo-
scopic systems were recently shown to
enable higher sensitivity and specificity
for surveillance of Barrett’s esophagus
and polyp detection in colonoscopy [3,
30]. Fluorescent contrast agents can
be applied by spraying or by injection
to achieve highly specific contrast with
low background to better find or differ-
entiate neoplastic lesions and identify
positive resection margins during im-
age-guided surgery [45]. For example,
an NIR-labeled EGFR-binding antibody
was recently shown to improve the out-
come of surgical resections of head and
neck cancers (. Fig. 4c; [59]). Commer-
cially available imaging systems have
stimulated the development and clin-
ical approval of additional fluorescent
probes, including antibody fragments
with faster background clearance and
activatable probes that do not require
washing after spraying onto the tissue of
interest [15].

Photoacoustic approaches

Photoacoustic devices employ pulsed
light and acquire acoustic echoes based

on the thermoelastic effect and recon-
struct a 3D image of the optical absorp-
tion. Innate chromophores such as oxy-
genated and deoxygenated hemoglobin,
lipids, and melanin are abundant and
can be discriminated using multispec-
tral photoacoustic approaches, support-
ing potential screening applications for
breast cancer, skin melanoma, and pso-
riatic skin lesions [4]. A prospective
multicenter study showed that many
suspicious breast masses could be cor-
rectly downgraded after photoacoustic
imaging with native contrast, poten-
tially reducing the number of biopsies
of benign lesions [41]. Multispectral
photoacoustic imaging combined with
indocyanine green was able to assess the
metastasis state of sentinel lymph nodes
in melanoma patients [55]. Further ap-
plications of photoacoustic imaging may
be enabled by improved contrast agents
with extended blood circulation, higher
absorption, specific absorption spectra,
or molecular targeting [54].

Advances in ultrasound

Ultrafast Doppler ultrasound and
sheer wave elastography

Ultrasound enables the visualization and
quantification of blood flow in larger
blood vessels. However, to date, mi-
crovessels could hardly be assessedwith-
out contrast agents (microbubbles). This
has changed with the development of ul-
trafast Doppler methods enabling frame
rates of several thousand hertz, which is
morethan100-foldhigherthanwhatcon-
ventional ultrasound systems offer. Ul-
trafast Doppler ultrasound was success-
fully applied to visualize microvascular
anatomy and function in the brain of hu-
man newborns and it was able to depict
different sleep states as well as dynamics
ofneonatal seizures (. Fig. 5a; [17]). Fur-
thermore, it also facilitated the develop-
ment of sheer wave elastography (SWE),
a real-timemethod tovisualize andquan-
tify the stiffness of tissues (. Fig. 5b).
Sheer wave elastography proved promis-
ing for thedetectionof thedegradationof
tendons and neoplastic lesions, although
the clinically most advanced application
is characterization of liver fibrosis [35],

forwhich large clinical trials have already
been performed.

Ultrasound localizationmicroscopy

Another important innovation is the
development of ultrasound localiza-
tion microscopy [13]. Here, injected
microbubbles are followed within the
image plane and the resulting tracks are
indicated in the B-mode images. Since
the tracks can be drawn significantly
smaller than the voxels, the vascular
representation exceeds the resolution of
the ultrasound transducers. Two dif-
ferent strategies were suggested, both
being currently implemented into com-
mercial ultrasound devices [13]. One
measures the motion of the bubbles
with ultrafast ultrasound (uULM), the
other uses motion models to determine
probabilities of microbubbles to have
moved to a certain position in subse-
quent frames. The latter method, called
“motion model ultrasound localization
microscopy” (mULM), was the first to be
applied in humans and proved promis-
ing to detect neovasculature in breast
cancers and to assess therapy responses
(. Fig. 5c; [46]).

Three-dimensional data
acquisition

Multiple new tissue characteristics such
as velocities in individual microvessels
or flow directions can be quantified that
were not accessible so far, broadening
perspectives for radiomic analyses. It can
be expected that the method can be im-
proved significantly by the introduction
of matrix ultrasound transducers facili-
tating true 3D image acquisition. Such
transducers have been implemented in
endoscopic ultrasound devices and re-
cently also in transducers for abdominal
and breast imaging by several companies.
Three-dimensional data can be used to
get a more detailed display of vascular
structure, to perform motion correction,
and to improve reproducibility, the lat-
ter still being a prominent limitation of
ultrasound.

Three-dimensional data acquisition
may also support the implementation of
molecular ultrasound imaging that uses
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Fig. 58 aUltrafast Doppler image of a humanneonate brain overlaid on a B-mode image.Colored circles represent cor-
tical regions of interest within parietal, cortical, and subcortical regions. (Reprintedwith permission from [17]).b Sheer
wave elastography reliably depicts liver fibrosis as demonstrated in the (color coded) liver images of patients with peripor-
tal fibrosis (fibrosis grade 2) and cirrhosis (fibrosis grade 4). (Thework is licensed under CC BY 4.0 from [35], under https://
creativecommons.org/licenses/by/4.0/.). cB-mode imageof a humanbreast cancer (left) and the according super-resolution
ultrasound image (mULM; right) indicating velocities in individualmicrovessels. (Thework is licensed under CC BY 4.0 from
[46], https://creativecommons.org/licenses/by/4.0/.).dAbility to distinguish high (MDA-MB-231) and lowmalignant breast
cancers (MCF-7) inmice bymolecular ultrasound imaging.The peak enhancement images indicate a lower vascularization
of theMCF-7 tumors, while the late enhancement images confirmhigher binding of VEGFR2-targetedmicrobubbles to the
highlymalignantMDA-MB-231 tumors and thus higher angiogenic activity.The destructive pulsewas applied to indicate
that the signals in the late enhancement imageswere not related tomicrobubbles circulating in the bloodpool. (Reprinted
with permission from [10])

microbubbles targetedagainst inflamma-
tory or angiogenic vasculature. Here, 3D
matrix transducers were applied tomon-
itor antiangiogenic therapy response in
colon cancer using theVEGFR2-targeted
microbubble BR55 [63]. BR55 is the first
molecularly targeted ultrasound contrast
agent that has been evaluated in patients.
Various preclinical and clinical studies
proved its value in detecting prostate,
breast, and ovarian cancer (. Fig. 5d;
[10]). In addition, in preclinical studies,
it faithfully assessed dysplastic trans-
formation of liver tissue [25] and was
superior to standard contrast-enhanced
ultrasound methods in differentiating
breast cancers of different malignity and
in monitoring antiangiogenic therapy
responses [5]. Other microbubbles with

high potential for clinical translation are
targeted against P- orE-selectin aswell as
alphav-beta3 integrins and were used to
monitor acute and chronic inflammatory
bowel disease as well as cardiovascular
pathologies.

However, despite this encouraging
progress in ultrasound technology, its
limited reproducibility and user depen-
dence remain a significant limitation.
Great efforts should be made in this
regard, e.g., by improving and standard-
izing the training of physicians, devel-
oping digital assist systems (e.g., guiding
the scanning procedure or supporting
lesion detection), and implementing ul-
trasound systems with true 3D imaging
capabilities.

Radiomics and comprehensive
diagnostics

For many years, new contrast agents
and imaging methods were the primary
drivers to improve disease diagnosis.
Currently, advanced analytical tools in-
cludingartificial intelligencehaveopened
up new avenues to make use of unused
and unknown information hidden in the
imaging data.

In this context, radiomics is a new
field in radiology that extracts quantita-
tive imaging features from medical im-
ages to describe the phenotype of lesions,
and associates it with biological charac-
teristics, therapeutic responses, or clini-
cal outcome (. Fig. 6).
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Fig. 68 Schematic representationofa radiomicpipeline.Diagnostic imaging is followedby lesion segmentationand feature
extraction. Classically, shape, intensity, and textural parameters are extracted, but can be extendedby functional andmolec-
ularparameters. Thedataanalysis caneitherbebasedon imagingdata,which iscomparedwithclinicaldataandgeneexpres-
sion, or be combinedwith these additional clinical parameters, to developdecision support systems for precisionmedicine
and therapymonitoring

The imaging features are frequently
based on intensity, shape, and textural
characteristics of the lesion; however,
theycanalsocontainfunctionalormolec-
ular imaging information [1, 22, 57]. For
example, Aerts and colleagues founda ra-
diomicsignature inCTdata frompatients
with lung and head-and-neck cancer, de-
scribing the intratumoral heterogeneity,
and showing a good prognostic potential
in a validation cohort [1]. Additionally,
they proved that quantitative imaging
parameters and clinical data contained
complementary information, and their
combined analysis led to better results
in comparison with the individual data
alone. Radiomic analyses are not limited
to the analysis of images of a single time
point, but can also be compared between
different time points, which is known as
“delta-radiomics” [34].

The quality and repeatability of ra-
diomic studies do not depend only on
the number of available data, but also
on other aspects, such as scanner model,

image acquisition protocol, image recon-
struction, and lesion segmentation [39,
73]. Hence, radiomic pipelines need to
be developed, and, ideally, seamlessly in-
tegrated into the clinical workflow, in or-
der to standardize theprocess fromimage
acquisition until lesion characterization
and classification, to reduce inter-oper-
ator variability, and to ensure generaliz-
ability. This includes the development of
semi-automated segmentation and fea-
ture extraction algorithms and the anal-
ysis of data from multi-center studies, to
identifyorgenerate featureswhichare ro-
bust when using different scanners and
scan protocols. The final lesion evalu-
ation task is solved by machine-learn-
ing algorithms, performing a regression
or classification task. Various algorithms
fromclassic support vectormachines and
decision trees to deep-learning classifiers
are used. The latter attractedmuch atten-
tion in thepast fewyears as they cancom-
bine some tasks in a radiomic pipeline,
such as automated feature extraction and

performance of predictions or classifica-
tions.

However, there is still uncertainty
about the ideal algorithm, which strongly
depends on the medical question and
the data. Eventually, the combination
of different algorithms might prove to
be superior, as shown by Diamant et al.,
who combined a classic radiomics model
and a deep-learning model [18]. Even
though some of the layers of the neural
network explicitly recognized radiomic
features, which were also found to be
predictive by the classic approach, the
prediction for the presence of distant
metastasis in patients with head-and-
neck cancer was significantly improved
when both models were combined.

Although more and more algo-
rithms are developed for solving specific
tasks—sometimes with a comparable
performance to radiologists—only a few
artificial-intelligence-based solutions are
approved for clinical use. A major lim-
itation of many studies is their limited
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generalizability. Since the patient cohort
used to train and test the algorithm often
originates from a single site only, its per-
formance on new data originating from
different sites is often worse. Focusing
on sampling a truly representative cohort
of the population from multiple sites for
the training process of the algorithm can
already help to increase its robustness
and generalizability, since the variability
in the population, as well as the variabil-
ity of the imaging devices used, better
resembles the real-world scenario.

Beside these more technical chal-
lenges, regulatory aspects must also be
adapted to provide guidelines for the
development of artificial-intelligence-
based solutions, e.g., how to deal with
machine-learning-based algorithms that
are continuously learning. Eventually,
these new developments will support
radiologists in their daily routine, taking
over some tiring and redundant work
and help to better standardize structured
radiologic reporting. Once certain clas-
sifier models have proven their value
in prospective studies, relevant imaging
biomarkers can be automatically inte-
grated in the radiologic reports. This
would simplify the integrationof relevant
imaging biomarkers and other available
clinical data in decision support systems
to improve diagnosis and personalize
therapy.

Future perspectives

The technological developments men-
tioned here will significantly extend the
range of morphological, functional, and
molecular information that can be ob-
tained by imaging. This will require that
radiologists deepen their knowledge in
pathophysiology and molecular mecha-
nisms of diseases and explore how these
affect their diagnostic findings. They also
need to investigate how the array of diag-
nostic biomarkers obtained will interact
and change after therapeutic interven-
tions.

Comprehensive diagnostics is the key
to precision medicine, and its poten-
tial has been shown by multiple pub-
lications. However, without proper so-
lutions for data integration in clinical
routine, digital patient files, and (inter-

)national E-health infrastructures, it will
not become a clinical reality [9]. Pro-
found knowledge of information tech-
nology infrastructures, data formats, and
interfacesmust be acquired and legal pre-
requisites for data ownership, data shar-
ing, and protection of patients’ privacy
clarified. Collaborations between differ-
ent diagnostic specialties, i.e., radiology,
nuclearmedicine, pathology, and labora-
torymedicineneed tobe intensified since
the integrated use of cross-disciplinary
information will make the borders be-
tween the different diagnostic medical
disciplines more flexible [31]. This may
require a significant adaptation of the
professional education of radiologists. In
this context, effort should be taken to un-
derstand the principles and potential pit-
falls of computer-assisted image analysis,
radiomics, and deep-learning algorithms
applied to generate powerful diagnostic
assays.

Practical conclusion

4 Imaging modalities have under-
gone rapid developments in recent
decades and the application area
of current devices is continually
increasing.

4 With the rise of deep learning, ra-
diomics, and comprehensive data
analysis, a new era of diagnostics
has been ushered in. Established
imaging methods are now comple-
mented by new applications such
as magnetic particle imaging (MPI),
optical imaging, and photoacoustics.

4 The potential of imaging to describe
pathophysiological relationships in
ever-increasing detail, both at whole-
body and tissue level, can be used
to better understand the mecha-
nistic effect of drugs, to preselect
patients to therapies, and to improve
monitoring of therapy success.

4 The use of interdisciplinary in-
tegrated diagnostics will greatly
change but also enrich the profession
of radiologists.
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